Melbourne Genomics

Health Alliance

Global knowledge. Individual care.

Clinical utility of genomics in childhood syndromes (12-month follow-up)

Background

Melbourne Genomics' 16 Clinical Flagships have been at the forefront of determining when genomic testing makes a demonstrable difference to the safety and quality of patient care.

This study was a 12-month follow-up of the Melbourne Genomics Childhood Syndromes Demonstration Flagship (2014-2015). The follow-up study was designed to address questions remaining about the longer-term clinical and health economic impacts of early genomic sequencing.

One of the stated advantages of genomic sequencing (compared to other tests) is that genomic information can be stored and reanalysed in future, as more is learnt about the causes of disease. This study aimed to address whether reanalysis of stored genomic data led to new diagnoses, and the most cost-effective and clinically useful timeframe for reanalysis.

Publications

"Exome Sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders", Dillon, O., Lunke, S., Stark, Z., Yeung, A., Thorne, N., Gaff, C., White, S., Tan, T., European Journal of Human Genetics (2018) doi:10.1038/s41431-018-0099-1

"Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes", Deborah Schofield, Luke Rynehart, Rupendra Shresthra, Susan M. White and Zornitza Stark, *Genetics in Medicine* (2019) doi.org/10.1038/s41436-019-0534-x

"Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness", Stark, Z., Schofield, D., Martyn, M., Rynehart, L., Shrestha, R., Alam, K., Lunke, S., Tan, T.Y., Gaff, C.L., White, S.M., *Genetics in Medicine* (2018) doi:10.1038/s41436-018-0006-8

Project description and activities

In the Melbourne Genomics Health Alliance Childhood Syndromes Clinical Flagship, 80 children under two years with a likely clinical diagnosis received a genomic sequencing test at the same time as their usual investigations and the impact of each pathway was rigorously evaluated.

The follow-up study looked at both aspects of the child's care and family-related outcomes at least 12 months after test results were returned. Further investigations, health utilisation and health outcomes were determined for the children. Cost-effectiveness studies considered the downstream effects of early diagnosis, and were also performed for reanalysis of stored data.

The Childhood Syndromes 12-month follow-up study was led by Associate Professor Susan White and Associate Professor Zornitza Stark (both from Murdoch Children's Research Institute). Health economic analysis was performed with Professor Deborah Schofield.

Outcomes

This study showed that changes in clinical management and health outcomes for children with an early diagnosis led to cost-savings of \$1,578 per quality-adjusted life year (QALY) gained, without increasing the use of hospital services.

Cascade testing of family members resulted in diagnosis of an additional 12 relatives. Two of these had their clinical management altered.

The effect of a diagnosis on parents' reproductive confidence was striking, with nine pregnancies in the diagnosed group compared to one in the undiagnosed group. Genomic sequencing had an additional cost of \$8,118 per QALY gained, when the costs and benefits of cascade testing and reproductive service use were considered.

Ongoing usual testing in undiagnosed children did not lead to any new diagnoses. In contrast, four diagnoses were made following reanalysis of stored genomic data. Cost-effectiveness investigations found reanalysis of undiagnosed patients at 18 months offered an incremental cost-saving, with \$1,059 saved for each additional diagnosis, compared to the standard care pathway.

Lessons learnt

- Early diagnosis and changes to management improved health outcomes for children in this cohort, without increasing downstream healthcare costs.
- Reanalysis of stored genomic data is more effective and cost-effective than ongoing testing.

Impact

This was the first study internationally to systematically follow up patients who had undergone genomic sequencing early in their care.

The evidence generated in this study formed the basis of a Medicare Services Advisory Committee application, undertaken by Australian Genomics using Melbourne Genomics data. Genetic testing for childhood syndromes item numbers 73358, 73359, 73360, 73361, 73362 and 73363 came into effect on 1 May 2020 and is estimated bring at least \$21.4 million funding for testing to Victorian patients over the next decade.

Clinical Flagship team

Name	Organisation	Role
Sue White	MCRI/VCGS	Clinical geneticist
Zornitza Stark	MCRI/VCGS	Clinical geneticist
Alicia Oshlack	MCRI	Bioinformatician
Alison Yeung	MCRI/VCGS	Clinical geneticist
Belinda Chong	MCRI/VCGS	Medical scientist
Charlotte Anderson	Victorian Life Sciences Computation Initiative	Bioinformatician
Christiane Theda	Royal Women's Hospital	Neonatologist
David Amor	MCRI/VCGS	Clinical geneticist
Deborah Schofield	MCRI	Health economist
Dylan Mordaunt	Women's and Children's Hospital	Pathologist
Emma Creed	Mercy Hospital	Genetic counsellor
Gemma Brett	MCRI/VCGS	Genetic counsellor
George McGillivray	RCH / MCRI/VCGS	Clinical geneticist
Heidi Peters	RCH	Metabolic physician
Ivan Macciocca	MCRI/VCGS	Genetic counsellor
Joy Yaplito-Lee	RCH	Metabolic physician
Katrina Bell	MCRI	Bioinformatician
Khurshid Alam	MCRI	Health economist
Lilian Downie	MCRI/VCGS	Genetics fellow
Luke Rynehart	MCRI	Health economist
Maie Walsh	MCRI/VCGS	Genetics fellow
Monique Ryan	RCH / MCRI	Neurologist
Patrick Yap	MCRI/VCGS	Genetics fellow
Paul Ekert	RCH / MCRI	Paediatrician
Paul James	RMH / PeterMac	Clinical geneticist
Peter Georgeson	UoM	Bioinformatician
Ravi Savarirayan	MCRI/VCGS	Clinical geneticist
Richard Leventer	RCH / MCRI	Paediatric neurologist
Rupendra Shrestha	University of Sydney	Health economist

Sebastian Lunke	MCRI/VCGS	Medical scientist
Shannon Cowie	MCRI/VCGS	Medical scientist
Simon Sadedin	MCRI/VCGS	Bioinformatician
Tiong Tan	MCRI/VCGS	Clinical geneticist